Rapamycin, but not FK-506, increases endothelial tissue factor expression: implications for drug-eluting stent design.

نویسندگان

  • Jan Steffel
  • Roberto A Latini
  • Alexander Akhmedov
  • Dorothee Zimmermann
  • Pamela Zimmerling
  • Thomas F Lüscher
  • Felix C Tanner
چکیده

BACKGROUND Drugs released from stents affect the biology of vascular cells. We examined the effect of rapamycin and FK-506 on tissue factor (TF) expression in human aortic endothelial cells (HAECs) and vascular smooth muscle cells (HAVSMCs). METHODS AND RESULTS Rapamycin enhanced thrombin- and tumor necrosis factor (TNF)-alpha-induced endothelial TF expression in a concentration-dependent manner. The maximal increase was 2.5-fold more pronounced than that by thrombin or TNF-alpha alone and was paralleled by a 1.4-fold higher TF surface activity compared with thrombin alone. Rapamycin by itself increased basal TF levels by 40%. In HAVSMCs, rapamycin did not affect thrombin- or TNF-alpha-induced TF expression. In contrast to rapamycin, FK-506 did not enhance thrombin- or TNF-alpha-induced endothelial TF expression. Thrombin induced a transient dephosphorylation of the mammalian target of rapamycin downstream target p70S6 kinase. Rapamycin completely abrogated p70S6 kinase phosphorylation, but FK-506 did not. FK-506 antagonized the effect of rapamycin on thrombin-induced TF expression. Rapamycin did not alter the pattern of p38, extracellular signal-regulated kinase, or c-Jun NH2-terminal kinase phosphorylation. Real-time polymerase chain reaction analysis revealed that rapamycin had no influence on thrombin-induced TF mRNA levels for up to 2 hours but led to an additional increase after 3 and 5 hours. CONCLUSIONS Rapamycin, but not FK-506, enhances TF expression in HAECs but not in HAVSMCs. This effect requires binding to FK binding protein-12, is mediated through inhibition of the mammalian target of rapamycin, and partly occurs at the posttranscriptional level. These findings may be clinically relevant for patients receiving drug-eluting stents, particularly when antithrombotic drugs are withdrawn or ineffective, and may open novel perspectives for the design of such stents.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapamycin promotes arterial thrombosis in vivo: implications for everolimus and zotarolimus eluting stents.

AIMS Drug-eluting stents (DES) may be associated with an increased risk for stent thrombosis when compared with bare-metal stents. In endothelial cells, rapamycin induces tissue factor (TF) by inhibiting the mammalian target of rapamycin (mTOR). However, the effect of mTOR inhibition on TF activity and thrombus formation in vivo has not yet been studied. Moreover, it is unclear whether second-g...

متن کامل

Rapamycin Regulates the Expression and Activity of Krüppel-Like Transcription Factor 2 in Human Umbilical Vein Endothelial Cells

BACKGROUND Although rapamycin has been reported to increase procoagulants and decrease anticoagulants in human umbilical vein endothelial cells (HUVECs), there is no significant difference in the incidence of stent thrombosis between patients with drug-eluting stents (DESs) and those with bare metal stents (BMSs). Krüppel-like transcription factor 2 (KLF2) has been identified as a key regulator...

متن کامل

Antiproliferative agents alter vascular plasminogen activator inhibitor-1 expression: a potential prothrombotic mechanism of drug-eluting stents.

OBJECTIVE Drug eluting stents (DES) reduce the incidence of restenosis after coronary angioplasty. Enthusiasm has been tempered by a possible increased risk of in-stent thrombosis. We examined the effects of paclitaxel and rapamycin on the endothelial transcriptome to identify alterations in gene expression associated with thrombosis. METHODS AND RESULTS Gene expression profiling was performe...

متن کامل

Rapamycin regulates endothelial cell migration through regulation of the cyclin-dependent kinase inhibitor p27Kip1.

Rapamycin is a macrolide antibiotic that inhibits vascular smooth muscle cell proliferation and migration and that is used clinically on drug-eluting stents to inhibit in-stent restenosis. Although inhibition of cell migration is an asset in preventing restenosis, it also leads to impaired stent endothelialization, a significant limitation of current drug-eluting stent technology that necessita...

متن کامل

Paclitaxel enhances thrombin-induced endothelial tissue factor expression via c-Jun terminal NH2 kinase activation.

Paclitaxel is used on drug-eluting stents because it inhibits proliferation of vascular cells. Stent thrombosis remains a concern with this compound, particularly with higher dosages. This study investigates the effect of paclitaxel on tissue factor (TF) expression in human endothelial cells. Paclitaxel enhanced thrombin-induced endothelial TF protein expression in a concentration- and time-dep...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 112 13  شماره 

صفحات  -

تاریخ انتشار 2005